The Crystal Structure of the \boldsymbol{P} Phase, Mo-Ni-Cr. II. Refinement of Parameters and Discussion of Atomic Coordination*

By David P. Shoemarer, Clara Brink Shoemaker and Frank C. Wison
Department of Chemistry, Massachusetts Institute of Technology, Cambridge 39, Massachusetts, U.S.A.

(Received 9 May 1956)

Abstract

The crystal structure of the P phase, $\mathrm{Mo}-\mathrm{Ni}-\mathrm{Cr}$, in atom ratio $42: 40: 18$, was described in its basic features in a previous communication. The present communication describes the refinement of the lattice constants with powder photographic data and of the positional parameters and atomic scattering parameters (approximately proportional to atomic numbers) by use of generalized Fourier projections with ($h k 0$) and ($h k 2$) single-crystal data. The structure is primitive orthorhombic, with lattice constants $a_{0}=9.070, b_{0}=16.983, c_{0}=4.752 \AA$, space group $D_{2 h}^{1 i}-P b n m$. The unit cell contains 56 atoms in an arrangement resembling two differently oriented σ-phase unit cells in juxtaposition. The atoms have characteristic coordination polyhedra with 12, 14, 15, and 16 vertices, of which only the last does not occur in the σ phase, but does occur in α-manganese. By least squares, values were found for eight different radii, chosen in accord with the symmetry of these polyhedra, and, by summing appropriate pairs of these radii, calculated values of the 58 different interatomic distances were obtained which agreed with the observed distances with a mean deviation of $0.035 \AA$. A re-examination of the σ-phase distances along these lines gave closely similar results. On the basis of the radii obtained, ligands in the P and σ phases seem to divide distinctly into two types: a small proportion of strong, probably relatively localized, bonds, presumably of high d character; and many more weaker, probably more delocalized and more typically metallic, ligands. The values obtained for the scattering parameters in the P phase are rough, but suggest that the content of molybdenum in the atomic sites increases with coordination from approximately zero for coordination 12 to approximately 100% for coordination 16 .

Introduction

The determination of the structure of the P phase in the molybdenum-nickel-chromium system was undertaken as a part of a program concerned with the investigation of the structures of some members of a group of binary and ternary alloys of transition metals, discovered largely by Beck and coworkers (Rideout, Manly, Kamen, Lement \& Beck, 1951), and shown by them to be interrelated in their phase behavior and probably to be electron compounds related to the σ phase. This group of compounds contains, besides the P phase in the Mo-Ni-Cr system (Rideout et al., 1951) and in the Mo-Ni-Fe system (Das, Rideout \& Beck, 1952), also the δ phase in Mo-Ni (Ellinger, 1942), the R and D phases in Mo-Co-Cr (Rideout et al., 1951), the μ phase in Mo-Co and other systems, and the χ phase ($\alpha-\mathrm{Mn}$ structure) in Mo-Fe-Cr (Andrews, 1949). The crystal structure of the σ phase in some binary systems has been described (Shoemaker \& Bergman, 1950; Bergman \& Shoemaker, 1954; Dickens, Douglas \& Taylor, 1951 ; Kasper, Decker \& Belanger, 1951; Kasper \& Waterstrat, 1956) and is essentially identical to the β-uranium structure (Tucker, 1950; Tucker \& Senio, 1953). The crystal structures of the μ phase (Arnfelt \& Westgren, 1935)

[^0]and of α-manganese and the χ phase (Bradley \& Thewlis, 1927; Kasper, 1954) have also been determined, and those of the δ phase (Shoemaker, Shoemaker \& Fox, work in progress) and of the R phase (Komura, Shoemaker \& Shoemaker, work in progress) have been partially determined. The structures of the μ and χ phases show strong similarities with the σ-phase structure, and there are strong indications of such similarities in the structures of the δ and R phases.

On the $\mathrm{Mo}-\mathrm{Ni}-\mathrm{Cr}$ phase diagram at $1200^{\circ} \mathrm{C}$. the P phase, with atom ratio in the neighborhood of 42:40:18, lies between a σ phase around 27:27:45 and a δ phase around 50:50:0. In the Mo-Ni-Fe system a P phase lies between a μ phase and the same Mo-Ni δ phase.

A specimen of the P phase of $\mathrm{Mo}-\mathrm{Ni}-\mathrm{Cr}$ in stated weight ratio $55: 32: 13$, corresponding to atomic ratio 42:40:18, annealed at $1200^{\circ} \mathrm{C}$., was made available to us in 1951 through the kindness of Prof. Paul A. Beck, then of Notre Dame University, now of the University of Illinois. In a previous communication (Brink \& Shoemaker, 1955) the basic features of the structure were reported (primitive orthorhombic, $a_{0}=9.07, b_{0}=17.01, c_{0}=4.74 \AA$, probable space group $D_{2 h}^{16}$-Pbnm, 56 atoms in an arrangement suggestive of two differently oriented σ-phase unit cells
in juxtaposition). In the present communication, refinements of the lattice constants by powder photography and of the atomic positional parameters and
approximate atomic numbers by generalized Fourier projections are described, and certain features of the structure are discussed.

Table 1. Powder photographic data for P phase, Mo-Ni-Cr
(Ni-filtered $\mathrm{Cu} K \boldsymbol{x}$ radiation)

		$m \mathrm{~F}^{2 *}$	Powder diagram		$h k l$	1/d cal. $\left(\AA^{-1}\right)$	$\frac{m F^{2 *}}{100}$	Powder diagram		
$h k l$	1/d cal. $\left(\AA^{-1}\right)$	100	1/dobs. $\left(\AA^{-1}\right)$	I				$1 / d_{\text {obs. }}$ (\AA^{\AA}		I
021	0.2412 0.2652	8	$0 \cdot 2441$	vw				α_{1}	α_{2}	
121	0.2652	11	0.2785	$\overline{v \omega} \dagger$	512	$0 \cdot 6961$	15			
150	0.3144	13	0.3182	f	611	$0 \cdot 6967$	31 \}	$0 \cdot 6981$		f
221	$0 \cdot 3268$	16	-	-	522	$0 \cdot 7035$	36	-		-
250	$0 \cdot 3678$	16	-	-	462	0.7046	65			
160	$0 \cdot 3701$	26	0.3697	vw	153	$0 \cdot 7053$	64	0.7054		f
330	0.3750	18	-	-	0,12,0	$0 \cdot 7066$	49			
151	$0 \cdot 3783$	105	0.3786	$m(b)$	292	0.7118	168			
301	0.3920	58	0.3923	w	303	0.7128	35	0.7129		${ }^{\boldsymbol{w}}$
311	$0 \cdot 3864$	23	-	-	382	0.7131	127			
340	$0 \cdot 4060$	39	0.4067	w	532	0.7157	134			
061	$0 \cdot 4112$	14	-	-	2,11,1	0.7158	91	0.7154		$w(b)$
002	$0 \cdot 4209$	617	0.4212	s	631	0.7163	58			
161	0.4257	179)	0.4266	ms	571	0.7198	84	-		-
170	0.4267	167)	$0 \cdot 4266$	ms	0,10,2	0.7238	69			
331	$0 \cdot 4300$	204	0.4309	$m s$	580	0.7251	50 \}	-		-
112	$0 \cdot 4391$	20	0.4387	vw	163	0.7318	108			
350	$0 \cdot 4428$	79)	0.4440	w	641	0.7330	36	0.7342		$w(b)$
410	$0 \cdot 4449$	45)	0.4440	w	333	0.7342	123	$0 \cdot 7342$		$w(b)$
420	$0 \cdot 4564$	811	$0 \cdot 4569$	$v s$	4,10,0	0.7356	118			
341	$0 \cdot 4573$	75 \}	$0 \cdot 4569$	vs	2,12,0	0.7402	144	0.7398		$v f(?)$
132	0.4696	127)	$0 \cdot 4701$	w	392	0.7533	71			
080	0.4710	54 \}	$0 \cdot 4701$	w	552	0.7535	269	0.7543	0.7542	m
202	0.4752	1398	$0 \cdot 4765$	$v s$	581	0.7550	117	0.7543	0.7542	m
171	0.4757	798 \}	0.4765	$v s$	2,10,2	0.7566	300			
212	$0 \cdot 4788$	510	$0 \cdot 4796$	m	173	0.7620	482	0.7617	0.7616	m
042	0.4823	207			590	0.7647	135	-		-
180	$0 \cdot 4838$	413	0.4845	vs	2,12,1	0.7695	184			
360	0.4839	812			353	0.7712	472	0.7714		$m s$
222	0.4896	375			413	0.7724	458			
351	$0 \cdot 4902$	781	$0 \cdot 4911$	vvs(b)	562	0.7784	459	0.7784	0.7779	w
411	$0 \cdot 4922$	758			602	0.7841	226	0.7844	0.7843	$v w$
142	$0 \cdot 4948$	556	$0 \cdot 4944$	m	612	$0 \cdot 7863$	187)	0.7844	0.7843	ow
421	$0 \cdot 5026$	42	$0 \cdot 5023$	$v f(?)$	433	0.7901	162	-		-
232	$0 \cdot 5069$	232	0.5075	m	622	0.7929	$\left.\begin{array}{r}53 \\ 242\end{array}\right\}$	0.7930		$v f($?)
271	0.5126	37	0.5126	$v f(?)$	591	0.7931	242 \}	0.7930		v(?)
431	0.5196	268	$0 \cdot 5199$	m	183	0.7954	83			
152	0.5254 0.5276	167			363 $3,10.2$	0.7955 0.7958	60 223	0.7957	0.7950	$m(b)$
181	0.5276 0.5277	137	0.5282	m (b)	$3,10.2$ $\mathbf{2 , 1 3 , 0}$	0.7958 0.7966	223 304			
242	0.5303	123			711	$0 \cdot 8021$	85			
322	0.5481	254	0.5282	m	2,11,2	$0 \cdot 8033$	116	0.8038	-	$v w(?)$
252	0.5590	22			632	$0 \cdot 8037$	140			
162	0.5605	41	0-5584	f	572	$0 \cdot 8068$	98 \}	$0 \cdot 8067$	0.8066	
281	0.5611	27			740	$0 \cdot 8069$	518 \}	$0 \cdot 8067$	0.8066	$m(b)$
332	0.5637	32	-	-	642	0.8168	106			
371	0.5688	44)	0.5691		731	0.8192	189	0.8200	-	$w(b)$
451	0.5705	42)	0.5691	f	0,12,2	$0 \cdot 8224$	114			
380	0.5756	39	0.5752	f	2,13,1	0.8239	145	0.8249		
262	0.5921	34	0.5923	f	0,14,0	0.8243	61 \}	0.8249		$w(b)$
-	-	-	0.5985	$w \dagger$	4,12,0	0.8329	66	0.8329		
422	0.6209	76	--	-	5,10,1	0.8336	44)			$v(?)$
2,10,0	$0 \cdot 6287$	30)			582	0.8384	158	0.8392		f
272	$0 \cdot 6290$	28			004	0.8418	1211	0.8423	0.8423	m
182	$0 \cdot 6413$	20			4,10,2	0.8476	49)			
362	0.6414	56	-	-	690	0.8476	$41\}$	${ }^{-851}$ -		
372	$0 \cdot 6756$	74	0.6757	f	2,12,2	0.8515	505	0.8521	0.8516	m
2,11,0	$0 \cdot 6842$	24	$0 \cdot 6853$	$v f($)	${ }^{830}$	$0 \cdot 8995$	30	-		
192	$0 \cdot 6857$	67 \}	0.6853	v(2,13,2	0.9010	82 \}			

[^1] were absent or inconsequential.

Refinements of lattice constants

Powder photographs, obtained with a finely pulverized specimen of the alloy in a 0.15 mm . pyrex capillary tube mounted in a 114.59 mm . Philips powder camera, with nickel-filtered copper radiation, were used as the basis of the refinement of the lattice constants. Because of the low symmetry and large size of the unit cell it was evident that resolution, except at low angles, would not be possible without information from another source regarding the expected intensities of reflection. For this purpose, singlecrystal intensity data obtained by Weissenberg photography for reciprocal lattice layers $l=0,1$, and 2 were used. For higher layers, use was made of the fact that in this structure, as in that of the σ phase, the atoms are confined to layers parallel to (001) planes, rather precisely quartering the cell; thus, except for normal decline, the corrected intensities for layer $l \pm 4$ are equal to corresponding ones for layer l. Factors of proportionality among the layers were estimated by a least-squares method from incomplete intensity data for layers 3 and 5 in relation to the complete data for layer 1, assuming the form factors to be proportional to a Gaussian function of l. When the estimated corrected intensities were multiplied by the appropriate powder multiplicities and tabulated with reciprocal spacings ($1 / d$) calculated from the preliminary single-crystal lattice constants, it became possible to identify most of the observed powder lines. This made possible successive adjustments in lattice constants, leading ultimately to the identification of nearly all powder lines out to a spacing of $1 \cdot 29 \AA^{-1}$ $(\sin \theta=0.994)$, which constituted a practical limit to both the powder data and the single-crystal data. The final assignment of values for the cell constants, made to provide the best possible fit with observed lines at high angles (especially ($11,2,0$), ($1,20,2$), and (146)), is as follows:

$$
\begin{gathered}
a_{0}=9 \cdot 070 \pm 0 \cdot 003, b_{0}=16 \cdot 983 \pm 0 \cdot 006, c_{0}=4 \cdot 752 \pm 0 \cdot 002 \AA . \\
\left(\lambda_{\mathrm{Cu} \alpha_{1}}=1.54050 \AA ; \lambda_{\mathrm{Cu} K \alpha_{2}}=1.54434 \AA .\right)
\end{gathered}
$$

In Table 1 the indexed powder diagram is presented. The calculated reciprocal spacings in this table are based on the final lattice constants just given. Planes with intensities much lower than the faintest observed powder lines are omitted; the limiting numerical value varies with angle, but is always taken low enough so that no observed lines in the neighborhood are below it and some unobserved ones are above it. It will be seen that the observed powder diagram is in excellent detailed agreement with the diagram predicted with the single-crystal intensities; it is also in agreement with the diagram given by Rideout et al. (1951). The agreement demonstrates also that the microscopic single-crystal fragments selected from the pulverized material and used for the structure determination are reasonably typical of the bulk material, and not
accidentally selected particles of some minor constituent.

Of the seven lines which could not be identified as P-phase lines, the two first and strongest corresponded closely with the strongest lines of chromic oxide, $\mathrm{Cr}_{2} \mathrm{O}_{3}$. The others, which were very much fainter, were not identified.
The density was determined by displacement of water in a pycnometer. Five determinations gave a mean value of $9.064 \mathrm{~g} . \mathrm{cm} .^{-3}$, with an average deviation of 0.013 . With the composition stated above, this corresponds to 54.7 atoms per unit cell. The space group requires that the number of atoms be a multiple of four, and the nearest multiple is 56 , which is the number of atoms shown to be present by the structure determination. This poor agreement suggested that the stated composition is in error, but chemical analysis of the alloy for molybdenum confirmed (within 1%) the stated value of 55 weight $\%$. However, a small residue, insoluble in acid, was identified by powder photography as $\mathrm{Cr}_{2} \mathrm{O}_{3}$. Other experiments showed that the amount of slag or oxide present is at least 2% and probably more; if the order of 4% of the material is assumed to be surface oxide or slag inclusions, the discrepancy between the observed density and the X-ray density ($9 \cdot 28 \mathrm{~g} . \mathrm{cm} .^{-3}$) may be explained.

Refinement of parameters

The choice of refinement method was determined in part by the circumstances of the structure determination. It was evident from inspection of the intensities of reflection on the ($h k 0$) reciprocal-lattice net that the structure is closely similar to the σ-phase structure, as may be seen from Fig. 1. The determination

Fig. 1. The ($h k 0$) reciprocal-lattice layers of (a) the σ phase (e.g., $\mathrm{Fe}-\mathrm{Cr}$) and (b) the P phase ($\mathrm{Mo}-\mathrm{Ni}-\mathrm{Cr}$). The intensities are shown qualitatively by the sizes of the dots. (Note: The layer for the P phase is drawn as if the b / a ratio were exactly 2 ; as this ratio is in fact $1 \cdot 87$, the figure should be expanded 7% in the vertical direction.)
of the structure consisted basically of the trial-anderror juxtapositioning of two differently oriented fragments of the σ phase (about one unit cell in size), in accordance with the b glide. A number of possible ways of doing this became evident, and these differed
mainly according to the selection of atoms to be designated as belonging to the subsidiary layers (atoms XI and XII). Therefore, at least throughout the period during which the structure-factor agreement was rough, refinement was carried out with the use of ($h k 2$) intensity data, which are sensitive to the selection of the subsidiary atoms while ($h k 0$) data are not especially so. A generalized projection calculated with ($h k 2$) data alone gives peaks corresponding to the atoms on both the main layers and the subsidiary layers, but with opposite sign. As the atoms are all reasonably well resolved in projection (except the subsidiary atoms, of which pairs coincide exactly in projection), this circumstance presented no handicap.

Weissenberg photographs were taken of the layers $l=0,1$, and 2 with nickel-filtered copper radiation, with a crystal fragment of irregular shape considerably less than 0.1 mm . in size. The intensities were estimated visually on multiple films with an intensity strip, and observed structure factors were calculated. Three successive projections were calculated with ($h k 2$) data. In the calculation of the subsequent set of structure factors the atoms were put in with weights, or 'scattering parameters', proportional to the heights of the peaks on the third projection. The R factors then obtained for ($h k 0$) and ($h k 2$) structure factors were 20 and 19% respectively, unobserved planes having been omitted from the calculations.
The signs from the above set of structure factors were then used in a pair of generalized projections, designated 'Fourier IV', calculated with both ($h k 0$) and ($h k 2$) data. One of these, $\Sigma\left(F_{h k 0}-F_{h k 2}\right)$, gave positive peaks due to atoms on the two main layers ($z=\frac{1}{4}$ and $\frac{3}{4}$), while the other, $\Sigma\left(F_{h k 0}+F_{h k 2}\right)$, gave positive peaks due to atoms on the two subsidiary layers ($z=0.00$ and 0.50). The computations were carried out on the MIT Whirlwind computer, with a program worked out by Prof. S. M. Simpson, Jr., of the Department of Geology of this Institute. (The original project of including ($h k 1$) data, not so much in order to improve resolution on the main layers as to use more data in refinement, was abandoned because the computer program could not conveniently deal with sine functions.)
Positional parameters were obtained from these projections by a least-squares method analogous to that used in three dimensions by Shoemaker, Donohue, Schomaker \& Corey (1950). The Gaussian parameters for each atom were obtained from nine points in a three-by-three grid taken as near as possible to the atomic center. The scattering parameter for each atom was taken to be proportional to the integral of the appropriate Gaussian electron-density function over all two-dimensional space. These scattering parameters were intended to be factors by which the previously used weighted mean atomic form factors (including a temperature factor $\exp \left(-B \sin ^{2} \theta / \lambda^{2}\right)$ with $\left.B=1 \cdot 1 \AA^{2}\right)$ should be multiplied to obtain the approximately correct values for the respective atoms. They are of
course affected in the present case by the fact that in a generalized projection contributions due to scattering matter at different levels are projected with varying weights, the weight in the present case decreasing with a cosine function of the distance away from the plane of the atomic center. Therefore the scattering parameters are normalized to a weighted mean of unity.

The two projections are shown in Fig. 2, and the

Fig. 2. (a) The $\Sigma\left(F_{h k 0}-F_{h k 2}\right)$ generalized projection, showing peaks due to atoms lying on the main layers at $z=1$ and $z=\frac{3}{4}$. (b) The $\Sigma\left(F_{h h 0}+F_{h k 2}\right)$ generalized projection, showing peaks due to atoms lying on the subsidiary layers; each peak is due to two atoms, one at $z=0.00$ and one at $z=0.50$.
In both projections the zero-density contours are drawn heavy.
parameters derived from them are listed under 'Fourier IV' in Table 2. It will be observed that small contributions from atoms on the subsidiary layers appear on the main layers, and vice versa; these presumably result from the property of generalized projections mentioned in the previous paragraph. Also worthy of mention are the diffraction effects, which are particularly noticeable around the high peaks on the subsidiary layers.

To correct for shifts in peak centers due to diffraction (finite summation) and peak-overlap effects, as well as to the property of generalized projections mentioned above, the method of Booth (1946) was em-

Table 2. Atomic parameters in P phase, $\mathrm{Mo}-\mathrm{Ni}-\mathrm{Cr}$

			x, y parameters*				Scattering parameters \dagger					
Atom	Position	z	Initial	$\begin{aligned} & \text { Fourier } \\ & \text { IV } \end{aligned}$	Δ	Final	$\begin{aligned} & \text { Fourier } \\ & \text { IV } \end{aligned}$	Δ	Final	$\begin{gathered} \% \\ \text { Mo } \end{gathered}$	C.N.	$\begin{gathered} \sigma \\ \text { type } \end{gathered}$
I	4(c)	\ddagger	$\begin{aligned} & 0.063 \\ & 0.118 \end{aligned}$	$\begin{aligned} & 0.0730 \\ & 0.1127 \end{aligned}$	$\begin{array}{r} -0.0007 \\ -0.0007 \end{array}$	$\begin{aligned} & 0.0737 \\ & 0.1134 \end{aligned}$	0.93	-0.02	0.95	35	12	\boldsymbol{A}
II	4(c)	\pm	$\begin{aligned} & 0.150 \\ & 0.248 \end{aligned}$	$\begin{aligned} & 0.1369 \\ & 0.2548 \end{aligned}$	$\begin{aligned} & +0.0006 \\ & +0.0001 \end{aligned}$	$\begin{aligned} & 0.1363 \\ & 0.2547 \end{aligned}$. 0.85	-0.02	0.87	20	12	D
III	4(c)	\pm	$\begin{aligned} & 0.340 \\ & 0.158 \end{aligned}$	$\begin{aligned} & 0.3267 \\ & 0.1566 \end{aligned}$	$\begin{array}{r} +0.0010 \\ -0.0012 \end{array}$	$\begin{aligned} & 0.3257 \\ & 0.1578 \end{aligned}$	0.75	-0.01	0.76	0	12	D
IV	4(c)	\ddagger	$\begin{aligned} & 0.590 \\ & 0.190 \end{aligned}$	$\begin{aligned} & 0.6063 \\ & 0.1829 \end{aligned}$	$\begin{aligned} & +0.0005 \\ & +0.0010 \end{aligned}$	$\begin{aligned} & 0.6058 \\ & 0.1819 \end{aligned}$	1-12	-0.06	1-18	78	14	C
V	4(c)	1	$\begin{aligned} & 0.673 \\ & 0.337 \end{aligned}$	$\begin{aligned} & 0.6642 \\ & 0.3262 \end{aligned}$	$\begin{array}{r} -0.0008 \\ +0.0009 \end{array}$	$\begin{aligned} & 0.6650 \\ & 0.3253 \end{aligned}$	1.25	+0.14	1-11	65	15	\boldsymbol{B}
VI	4(c)	4	$\begin{aligned} & 0 \cdot 443 \\ & 0 \cdot 447 \end{aligned}$	$\begin{aligned} & 0.4751 \\ & 0.4532 \end{aligned}$	$\begin{array}{r} +0.0005 \\ -0.0004 \end{array}$	$\begin{aligned} & 0.4746 \\ & 0.4536 \end{aligned}$	$\begin{gathered} 1 \cdot 35 \\ (\mathrm{I} \cdot 27) \end{gathered}$	-0.06	$\begin{gathered} 1 \cdot 41 \\ (1 \cdot 30) \end{gathered}$	100	16	-
VII	4(c)	4	$\begin{aligned} & 0.190 \\ & 0.412 \end{aligned}$	$\begin{aligned} & 0.1984 \\ & 0.4047 \end{aligned}$	$\begin{array}{r} -0.0004 \\ 0.0000 \end{array}$	$\begin{aligned} & 0.1988 \\ & 0.4047 \end{aligned}$	1-22	$-0 \cdot 10$	$\begin{gathered} 1 \cdot 32 \\ (1 \cdot 30) \end{gathered}$	100	14	C
VIII	4(c)	1	$\begin{aligned} & 0.807 \\ & 0.082 \end{aligned}$	$\begin{aligned} & 0.8128 \\ & 0.0773 \end{aligned}$	$\begin{aligned} & -0.0024 \\ & -0.0007 \end{aligned}$	$\begin{aligned} & 0.8152 \\ & 0.0780 \end{aligned}$	$\begin{gathered} 0.68 \\ (0.72) \end{gathered}$	$+0.07$	$\begin{gathered} 0.61 \\ (0.76) \end{gathered}$	0	12	D
IX	4(c)	\pm	$\begin{aligned} & 0.943 \\ & 0.368 \end{aligned}$	$\begin{aligned} & 0.9382 \\ & 0.3655 \end{aligned}$	$\begin{aligned} & -0.0001 \\ & +0.0005 \end{aligned}$	$\begin{aligned} & 0.9383 \\ & 0.3650 \end{aligned}$	1-13	-0.05	1-18	78	14	C
X	4(c)	\pm	$\begin{aligned} & 0.513 \\ & 0.027 \end{aligned}$	$\begin{aligned} & 0.5201 \\ & 0.0346 \end{aligned}$	$\begin{array}{r} -0.0001 \\ -0.0009 \end{array}$	$\begin{aligned} & 0.5202 \\ & 0.0355 \end{aligned}$	$\underset{(1 \cdot 34)}{1 \cdot 34}$	-0.03	$\begin{gathered} 1 \cdot 37 \\ (\mathrm{I} \cdot 30) \end{gathered}$	100	15	-
XI	$8(d)$	$0 \cdot 9986 \ddagger$	$\begin{aligned} & 0.250 \\ & 0.535 \end{aligned}$	$\begin{aligned} & 0.2512 \\ & 0.5377 \end{aligned}$	$\begin{aligned} & +0.0008 \\ & +0.0002 \end{aligned}$	$\begin{aligned} & 0.2504 \\ & 0.5375 \end{aligned}$	$\begin{gathered} 0.66 \\ (0.72) \end{gathered}$	$+0.07$	$\begin{gathered} 0.59 \\ (0.76) \end{gathered}$	0	12	-
XII	8(d)	$0.0008 \ddagger$	$\begin{aligned} & 0.380 \\ & 0.288 \end{aligned}$	$\begin{aligned} & 0.3865 \\ & 0.2883 \end{aligned}$	$\begin{array}{r} -0.0003 \\ 0.0000 \end{array}$	$\begin{aligned} & 0 \cdot 3868 \\ & 0 \cdot 2883 \end{aligned}$	1.03	-0.01	1.04	52	14	E

[^2]\ddagger The two z parameters are not significantly different from 0.00 (see text).
ployed. A pair of generalized projections, 'Fourier V', paralleling Fourier IV but with calculated structure amplitudes as well as signs, was prepared, with the omission of the same planes that were omitted in the calculation of Fourier IV. The parameters going into the calculation of these structure factors were those given by Fourier IV, except that some of the scat-tering-factor parameters which appeared to be unreasonably high or low were replaced by limiting values (the parenthesized figures in Table 2). The resulting projections resembled those of Fourier IV very closely, even in the locations and heights of minor maxima and minima in the background. Parameters were obtained as before, and from these were subtracted the parameters going into the structure-factor calculations, in order to yield parameter shifts represented by ' Δ ' in Table 2. These shifts were subtracted from the parameters from Fourier IV, to give the values listed under 'Final' in Table 2.

As in the case of the uncorrected parameters, some of the scattering parameters appeared unreasonably
high or low. In the calculation of the final set of structure factors, given in Table 3, these were replaced by limiting values (parenthesized in Table 2), calculated this time with due account of anomalous K-electron scattering, which had been neglected up to this point. The lower limit was taken as the ratio of the corrected scattering factor for chromium to the corrected weighted mean, the upper limit similarly for molybdenum, considering in all cases only the scattering factor for zero scattering angle since the scattering parameter was determined as the total effective quantity of scattering matter in the atomic Fourier peak. However, the introduction of these limits destroyed the normalization. Moreover, in the final struc-ture-factor calculation, the previously used weighted mean form factor, uncorrected for anomalous scattering, was multiplied by the scattering parameters. As a result, the structure factors are on the average scaled about 8% high (2% from the first cause, 6% from the second), and the corrected intensities of Table 1 are accordingly about 16% too high, without taking

Table 3. Observed and calculated structure factors

k	F_{0}	F_{c}	k	F_{o}	F_{c}	k	F_{o}	F_{c}	k	F_{0}	F_{c}	k	F_{o}	F_{c}	k	$F_{\text {o }}$	F_{c}
	$10, k_{1} 1$		4	84	-102	18	11	10	12	56	52	8	40	42	7	-	4
1	32	-29	5	46	53	19	12	8	13	-	-4	9	-	- 2	8	\square	1
2	14	-15	6	23	-27				14	47	-46	10	25	32	9	23	22
3	14	-10	7	11	- 3		$3 k 2$		15	14	12	11	-	11	10	27	19
4	29	21	8	16	- 2				16	40	35	12	-	4	11	12	-13
5	22	-24	9	29	24	1	5		17	-	-4	13	44	35	12	19	-21
6	13	-12	10	-	9	2	56	60	18	-	-12	14	27	21	13	18	18
7	12	13	11	20	-18	3	20	22	19	11	17	15	-	3	14	18	20
8	22	-22	12	26	-26	4	10	15				16	43	43			
9	35	43	13	-	5	5	8	-2		$5 k 2$		17	14	-14		$9 k 2$	
			14	12	-12	6	26	-10	1		- 1				1	13	19
	$11, k_{1} 1$		15	-	6	7	30 40	$\begin{array}{r}30 \\ -38 \\ \hline\end{array}$	2	21	-15		7 k 2		2	-	-14
0	14	- 8	16	18	14	8	40		3	41	38				3	29	-20
1	17	17	17	43	-37	9 10	30 53	-25	4	-	-11	2	-	- 0	4	28	-24
2	-	- 2	18	12	6	11	11	7	5	58	-61	3	17	13	5	36	33
3	14	-20	19	14	-15	12			6	76	-84	4	41	-39	6	34	-28
4	13	11	20	40	49	13		-3	7	35	40	5	14	12	7	40	-39
5	13	-11				14	二	-6	8	45	-50	6	32	-26	8	48	-49
6	7	8				15	-	7	9	15	14	7	12	-11	9	-	8
						16	35	22	10	11	2	8	56	56	10	36	-42
	0 k 2		0	59	-61		12	5	11		9	9	14	15	11	26	22
			1	80	94	18	33	-30	12	12	-11	10	34	-25	12	4	6
0	Str.	-176	2	69	-77			-40	13	-	-4	11	12	-10			
2	16	-24	3	54	-58	19	41	-40	14	-	-3	12	12	12		10,k,2	
4	72	93	4	39	-40				15	34	-35	13	-	-6	0	-	
6	11	-2	5	17	19		$4 k 2$		16	34	27	14	-	5	1	24	24
8	-	3	6	21	-25	0	11	0	17	17	-12	15		- 6	2	32	-38
10	42	36	7	19	2	1	-	-2	18	34	40	16	11	-21	3	11	-17
12	53	-58	8	-	-2	2	31	-15							4		3
14	64	69	9	46	-44	3	18	-12		6 k 2					5		
16	30	-30	10	62	61	4	21	-18	0	76	-75		$8 k 2$		6		5
18	11	12	11	38	41	5	13	8	1	48	-57	0	54	70	7		1
20	10	2	12	80	90	6	29	24	2	26	-26	1	22	-24	8	13	19
			13	32	32	7	10	11	3	42	40	2	-	4			
	1 k 2		14	38	41	8	10	10	4	36	-44	3	-	-12			
1	16	21	15	18	-22	9	14	-12	5	-	-7	4	29	-34		11,k,	
2	-	-7	16	-		10	25	-22	6	-	0	5	-	2	1	-	0
3	40	-48	17	24	-14	11	-	11	7	19	-21	6	-		2	17	-40

account of the angular dependence of the anomalous scattering correction (absorbed, in effect, into the temperature factor).

In Table 3 the observed and final calculated structure factors, scaled on the basis of one asymmetric unit, are compared. The agreement is generally satisfactory, though there are a few rather large discrepancies, some of which may be due to absorption (despite the small size of the crystal, absorption effects may arise from its irregular shape, as the calculated linear absorption coefficient is $1300 \mathrm{~cm} .^{-1}$). The strong reflections show some evidence of secondary extinction. The final R factors for ($h k 0$), ($h k l$), and ($h k 2$) data, omitting all unobserved planes, were respectively $16.6,19.8$, and 16.5%, with a weighted average of 17.5%, representing a very slight improvement over the average factor (17.8%) for the previous set of structure factors (following Fourier IV).

In order to permit a refinement of the two z parameters by least squares, the intensities of a number of reflections ($h k 3$) and ($h k 5$) were estimated from Weissenberg photographs of the same crystal reoriented to permit rotation around the a axis. Forty observational equations were reduced to two normal equations in
the usual way, and these were solved to obtain the two z parameters. The two values, -0.0014 for XI and +0.0008 for XII, are very close to the 'ideal value' of exactly zero. Since, however, the apparent standard errors to which they are subject are 0.0064 and 0.0043 respectively, the parameters are not regarded as significantly different from zero. The large standard errors are due in large part to the smallness of the number of suitable data available for the calculation. The uncertainty in the z parameters is perhaps much smaller than that indicated by the standard error calculated from residuals, in view of the probable tendency of these atoms to form bonds of equal length with the atoms directly above and below them; if a z parameter were to differ from zero by as much as 0.0064 (or $0.030 \AA$) the distances above and below the atom would differ by $0 \cdot 12 \AA$, or over 4%. Accordingly, these parameters were given the value zero in the calculation of the structure factors given in Table 3 and in the calculation of the interatomic distances given in Table 4.

The probable errors in the x, y, and scattering parameters may conservatively be taken as comparable with the averages of the Booth shifts. Limits of error,

Fig. 3. The crystal structure of the P phase, Mo-Ni-Cr, viewed along the c axis. The unit cell is outlined in thin solid line; the origin is at upper left, with x running downwards, y toward the right. Light circles joined by dashed lines are atoms on one main layer at $z=\frac{1}{4}$; heavy circles joined by solid lines are atoms on the other main layer at $z=3$. Each solid black circle represents two atoms in superposition, one on one subsidiary layer at $z=0.00$ and one on the other subsidiary layer at $z=0.50$. The diameter of each circle is proportional to the final 'scattering parameter' (except where replaced by a parenthesized limiting value) given for the corresponding atom in Table 2.
taken as three times the probable error, may be taken as $0.02 \AA$ for the positional parameters, or $0.03 \AA$ for the interatomic distances, and about 0.2 for the scattering parameters, or about 30% in the figures given for the percentage content of molybdenum in the atomic sites.

Discussion

The P-phase structure bears close resemblances to the σ-phase structure, a fact that was very useful in the structure determination above described. Grossly, the P-phase structure differs from the σ-phase structure in that the two orientations of pseudohexagonal ('subcell') axes that are found on alternating main layers in the σ phase are present in adjacent regions on every main layer of the P phase. At the joins between the differently oriented fields on a given main layer, where the pseudohexagonal axes appear to 'step' from layer to layer, pentagonal holes replace some of the σ-phase hexagonal holes, resulting in some apparent distortion of the pseudohexagonality and also resulting in an increase in the proportion of 12coordinated atoms in the structure from one-third to three-sevenths. However, the distortion does not result in poorer packing, as will be seen in the discussion that follows. The types of atomic coordination found in the P phase are the same as those found in the σ phase (and, as shown by the last column of Table 2, in most cases are even similarly located with respect to one another), except that in the P phase there is a kind of coordination, 16 -fold, not found in the σ phase. Other differences between the two structures are relatively minor.

We have pointed out (Shoemaker, Brink \& Fox, 1955) that the α-manganese or χ-phase structure has layers resembling very closely those existing in the σ phase, and indeed the two main layers in one half of the α-manganese cubic cell (between, say, $z=0$ and $z=\frac{1}{2}$) resemble the two main layers of a rather distorted σ-phase unit cell, as shown in Fig. 4. The P-phase structure has in common with the α-manganese structure, besides the resemblances in the layers, the occurrence of 16 -fold coordination (the atoms represented by large circles in Fig. 4).

(a)

(b)

Fig. 4. (a) The crystal structure of the σ phase (e.g., $\mathrm{Fe}-\mathrm{Cr}$), and (b) that of α-manganese and of the χ phase (e.g., $\mathrm{Fe}_{36} \mathrm{Cr}_{12} \mathrm{Mo}_{10}$), for comparison with the P-phase structure shown in Fig. 3. Compare one unit cell of the σ phase, or the lower (more lightly drawn) layers of those shown for α-manganese (representing one half of the body-centered cubic unit cell), with the leftmost half of the unit cell of the P phase.

It is of interest to examine the coordination types in terms of the coordination polyhedra, the vertices of which are usually taken to be the near neighbors (ligates) of the atoms concerned, but will here be
taken to be the termini of the ligand radii directed toward these neighbors. This latter definition is the one more appropriate to a discussion of bond lengths as the sum of metallic radii, where a given atom with

Table 4. Observed and calculated interatomic distances

All distances are in Ångström units (\AA). Ligands are grouped according to layers on which the ligate atoms are found. Symbol(s) following each ligate give the relation to the numbered equivalent atom in Fig. 3 ($1=$ identity; $t=$ lattice translation; $i=$ inversion; $m=$ mirror reflection; $b=b$-glide reflection; $n=n$-glide reflection). Asterisks indicate six-coordinated ligands. All averages of distances and deviations are weighted according to the numbers of times the respective distances occur.

		Atom I			Atom V				
		$D_{\text {obs }}$.	$D_{\text {cal }}$.	\triangle			$D_{\text {obs }}$.	$D_{\text {cal }}$.	Δ
II	1	$2 \cdot 466$	2.384	0.082	*IV	1	2494	$2 \cdot 536$	0.042
III	1	$2 \cdot 407$	$2 \cdot 384$	0.023	*VI	1	$2 \cdot 780$	$2 \cdot 772$	0.008
VI(b)	1	$2 \cdot 749$	$2 \cdot 805$	0.056	*IX	1	$2 \cdot 569$	$2 \cdot 536$	0.033
VIII(t)	1	$2 \cdot 420$	$2 \cdot 384$	0.036					
					$\mathbf{X I}(i, i m)$	2	$2 \cdot 726$	$2 \cdot 728$	0.002
$\mathbf{X I}(b, b m)$	2	$2 \cdot 370$	$2 \cdot 384$	0.014	XII $(1, m)$	2	$2 \cdot 859$	2.981	$0 \cdot 122$
$\operatorname{XII}(n, n m)$	2	$2 \cdot 659$	$\mathbf{2 \cdot 6 3 7}$	$0 \cdot 022$	$\mathrm{XII}(n, n m)$	2	3.030	2.981	0.049
$\mathrm{V}(n)$	2	$2 \cdot 723$	$2 \cdot 743$	0.020	$\mathrm{I}(n)$	2	$2 \cdot 723$	$2 \cdot 743$	$0 \cdot 020$
$\mathrm{VI}(n)$	2	$2 \cdot 784$	$2 \cdot 805$	0.021	II (n)	2	$2 \cdot 749$	2.743	0.006
	12	$2 \cdot 593$	-	0.029	$\operatorname{III}(n)$	2	2.802	$\begin{array}{r}2.743 \\ \hline\end{array}$	0.059
						15	$2 \cdot 775$		0.040
		Atom II					Atom VI		
I	1	$2 \cdot 466$	$2 \cdot 384$	0.082	$I(b)$	1	$2 \cdot 749$	$2 \cdot 805$	0.056
III	1	$2 \cdot 379$	$2 \cdot 384$	0.005	*V	1	$2 \cdot 780$	$2 \cdot 772$	0.008
VII	1	$2 \cdot 610$	$2 \cdot 637$	0.027	*VII	1	$2 \cdot 636$	$2 \cdot 660$	$0 \cdot 024$
IX (t)	1	$2 \cdot 595$	$2 \cdot 637$	0.042	VIII(b)	1	$2 \cdot 846$	$2 \cdot 805$	0.041
$\mathbf{X I I}(1, m)$	2	$2 \cdot 627$	$2 \cdot 637$	0.010	$\mathbf{X I}(1, m)$	2	$2 \cdot 753$	$2 \cdot 805$	0.052
$\operatorname{XII}(n, n m)$	2	$2 \cdot 658$	$2 \cdot 637$	0.021	XI($i, i m$)	2	$2 \cdot 767$	$2 \cdot 805$	0.038
					$\mathbf{X I I}(1, m)$	2	$3 \cdot 151$	3.058	0.093
IV (n)	2	$2 \cdot 623$	$2 \cdot 637$	0.014					
$\mathrm{V}(n)$	2	$2 \cdot 749$	$2 \cdot 743$	0.006	$I(n)$	2	$2 \cdot 784$	$2 \cdot 805$	0.021
	12	$2 \cdot 614$	-	0.022	$\begin{aligned} & \text { *VI(}(i) \\ & \operatorname{VIII}(n) \end{aligned}$	2	$2 \cdot 888$	$2 \cdot 856$	0.032
						2	$2 \cdot 833$	$2 \cdot 805$	0.028
						16	$2 \cdot 835$	-	0.041
		Atom III							
I	1	$2 \cdot 407$	$2 \cdot 384$	0.023			Atom VII		
II	1	$2 \cdot 379$	$2 \cdot 384$	0.005	II	1	$2 \cdot 610$	$2 \cdot 637$	0.027
IV	1	$2 \cdot 573$	$2 \cdot 637$	$0 \cdot 064$	*VI	1	$2 \cdot 636$	$2 \cdot 660$	0.024
X	1	$2 \cdot 725$	$2 \cdot 743$	0.018	$\begin{aligned} & \text { *IX }(t) \\ & \mathbf{X}(b) \end{aligned}$	1	$\begin{aligned} & 2.457 \\ & 2.980 \end{aligned}$	$2 \cdot 424$$2 \cdot 981$	$\begin{aligned} & 0.033 \\ & 0.001 \end{aligned}$
$\mathbf{X I}(b, b m)$	2	$2 \cdot 462$	$2 \cdot 384$	0.078					
$\mathbf{X I I}(1, m)$	2	$2 \cdot 575$	$2 \cdot 637$	$0 \cdot 062$	$\begin{aligned} & \mathbf{X I}(1, m) \\ & \mathbf{X I I}(1, m) \end{aligned}$	2	$2 \cdot 592$	$2 \cdot 637$	0.045
						2	$2 \cdot 868$	$2 \cdot 890$	0.022
$\mathrm{V}(n)$	2	$2 \cdot 802$	$2 \cdot 743$	0.059					
IX (n)	2	$2 \cdot 615$	$2 \cdot 637$	0.022	IV (n)	2	$2 \cdot 919$	$2 \cdot 890$	0.029
	12	$2 \cdot 583$	-	0.046	VIII (n)	2	$2 \cdot 617$	$2 \cdot 637$	0.020
					$\mathbf{X}(n)$	2	$3 \cdot 050$	2.981	0.069
						14	$2 \cdot 770$	-	0.032
		Atom IV							
III	1	$2 \cdot 573$	2.637	0.064			Atom VIII		
*V	1	$2 \cdot 494$	2.536	0.042	$\mathrm{I}(t)$	1	$2 \cdot 420$	$2 \cdot 384$	0.036
VIII	1	$2 \cdot 592$	2.637	0.045	IV	1	$2 \cdot 592$	$2 \cdot 637$	0.045
*X	1	$2 \cdot 605$	$2 \cdot 536$	$0 \cdot 069$	$\begin{aligned} & \mathrm{VI}(b) \\ & \mathbf{X} \end{aligned}$	1	$\begin{aligned} & 2 \cdot 846 \\ & 2 \cdot 771 \end{aligned}$	$\begin{aligned} & 2 \cdot 805 \\ & 2 \cdot 743 \end{aligned}$	$\begin{aligned} & 0.041 \\ & 0.028 \end{aligned}$
$\mathbf{X I I}(1, m)$	2	2.936	2.890	0.046					
$\mathrm{XII}(n, n m)$	2	$2 \cdot 857$	$2 \cdot 890$	0.033	$\begin{aligned} & \mathrm{XI}(n, n m) \\ & \operatorname{XII}(n, n m) \end{aligned}$	2	$\begin{aligned} & 2 \cdot 367 \\ & 2 \cdot 644 \end{aligned}$	$\begin{aligned} & 2 \cdot 384 \\ & 2 \cdot 637 \end{aligned}$	$\begin{aligned} & 0.017 \\ & 0.007 \end{aligned}$
$\mathrm{II}(n)$	2	$2 \cdot 623$	2.637	0.014					
VII (n)	2	$2 \cdot 919$	2.890	0.029	$\mathrm{VI}(n)$	2	$2 \cdot 833$	$2 \cdot 805$	0.028
IX(n)	2	$2 \cdot 930$	$2 \cdot 890$	0.040	VII (n)	2	$2 \cdot 617$	$2 \cdot 637$	0.020
	14	$2 \cdot 771$	-	0.039		12	$2 \cdot 629$	-	0.024

		Atom IX			Atom XI				
		$D_{\text {obs }}$.	$D_{\text {cal. }}$	Δ			$D_{\text {obs. }}$	$D_{\text {cal. }}$	Δ
II (t)	1	$2 \cdot 595$	2.637	0.042	I (b)	1	$2 \cdot 370$	$2 \cdot 384$	0.014
*V	1	$2 \cdot 569$	2.536	0.033	III(b)	1	$2 \cdot 462$	$2 \cdot 384$	0.078
*VII (t)	1	$2 \cdot 457$	$2 \cdot 424$	0.033	VI	1	$2 \cdot 753$	$2 \cdot 805$	0.052
$\mathbf{X}(b)$	1	2.920	2.981	0.061	VII	1	$2 \cdot 592$	$2 \cdot 637$	0.045
					$\mathbf{X}(b)$	1	$2 \cdot 727$	$2 \cdot 743$	0.016
$\mathbf{X I}(i, i m)$	2	$2 \cdot 661$	$2 \cdot 637$	0.024	$\begin{aligned} & \mathrm{V}(i) \\ & \text { VI }(i) \\ & \text { VIII }(n) \end{aligned}$		2.726 2.728		0.002
$\mathbf{X I I}(n, n m)$	2	$2 \cdot 900$	$2 \cdot 890$	0.010		1			
						1	$2 \cdot 767$	$2 \cdot 805$	0.038
$\operatorname{III}(n)$	2	$2 \cdot 615$	$2 \cdot 637$	0.022		1	$2 \cdot 367$	$2 \cdot 384$	0.017
$\operatorname{IV}(n)$	2	2.930	$2 \cdot 890$	0.040	$\underline{\mathrm{IX}}(\mathrm{i})$	1	$2 \cdot 661$	$2 \cdot 637$	0.024
$\mathbf{X}(n)$	2	3.009	2.981	0.028	$\mathbf{X}(n)$	1	$2 \cdot 703$	$2 \cdot 743$	0.040
	14	$2 \cdot 769$	-	0.030	$\mathbf{X I}\left(m, m^{\prime}\right)$	2	$\begin{aligned} & 2 \cdot 376 \\ & 2 \cdot 573 \end{aligned}$	$2 \cdot 384$	$\begin{aligned} & 0.008 \\ & 0.028 \end{aligned}$
					Atom XII				
					II	1	$2 \cdot 627$	$2 \cdot 637$	0.010
		Atom X			III	1	$2 \cdot 575$	$2 \cdot 637$	0.062
III	1	$2 \cdot 725$	2-743	0.018	IV	1	$2 \cdot 936$	$2 \cdot 890$	0.046
*IV	1	$2 \cdot 605$	$2 \cdot 536$	0.069	$\underset{V}{V}$	1	$2 \cdot 859$	2.981	$0 \cdot 122$
VII(b)	1	$2 \cdot 980$	2.981	0.001	$\begin{aligned} & \text { VI } \\ & \text { VII } \end{aligned}$	1	$\begin{aligned} & 3 \cdot 151 \\ & 2 \cdot 868 \end{aligned}$	$3 \cdot 058$	0.093
VIII	1	$2 \cdot 771$	$2 \cdot 743$	0.028		1		$2 \cdot 890$	0.022
IX (b)	1	$2 \cdot 920$	2.981	$0 \cdot 061$	$\begin{aligned} & \mathrm{I}(n) \\ & \mathrm{II}(n) \end{aligned}$	1	$2 \cdot 659$	$2 \cdot 637$	$\begin{aligned} & 0.022 \\ & 0.021 \end{aligned}$
	2	$2 \cdot 727$	$2 \cdot 743$	0.016		1	$2 \cdot 658$	$2 \cdot 637$	
$\mathbf{X I}(n, n m)$	2	$2 \cdot 703$	$2 \cdot 743$ $2 \cdot 743$	0.040	IV (n)		$2 \cdot 857$	$2 \cdot 890$	0.033
		$3 \cdot 050$			$V(n)$ $V I I I$ (n)	1	3.030	2.981	0.049
VII (n)	2		2.981	0.069	IX (n)	1	$2 \cdot 900$	$2 \cdot 890$	0.007 0.010
$\mathbf{I X}(n)$	2	$3 \cdot 009$	$2 \cdot 981$	0.028					0.010
* X (i)	2	$2 \cdot 690$	$2 \cdot 648$	0.042	* XII $\left(m, m^{\prime}\right)$	2	$\begin{aligned} & 2 \cdot 376 \\ & 2 \cdot 751 \end{aligned}$	2.424-	$\begin{aligned} & 0.048 \\ & 0.042 \end{aligned}$
	15	$2 \cdot 824$	-	0.038		14			
			Number of different distances Average distance Largest distance Smallest distance Average deviation between $D_{\text {obs. }}$ and $D_{\text {cal }}$ Largest deviation			58			
						$2 \cdot 710$			
						$3 \cdot 151$			
						$2 \cdot 367$			
						0.036			
						0.122			

a given coordination type may have, depending on the symmetry of its coordination, one or more characteristic radii. The structure may then be regarded as a close packing of the respective conjugate polyhedra (see Wells (1956), p. 32, pp. 56 ff.), or even of spheres and correspondingly distorted spheres.
The coordination polyhedra present in the σ and P phases have roughly equilateral triangular faces, and fivefold and/or sixfold vertices. (A fivefold vertex is a vertex where five edges come together, and so on.) We shall speak of the radius to a fivefold vertex as a five-coordinated radius (r or r^{\prime}), and of the radius to a sixfold vertex as a six-coordinated radius (r^{*}). Clearly, in the absence of considerable distortion, a five-coordinated radius should form a ligand only with another five-coordinated radius and a six-coordinated radius only with another six-coordinated radius; hence we may speak of five-coordinated ligands and sixcoordinated ligands. These names are not wholly satisfactory but are descriptive (since a five-coordinated ligand has a ring of five atoms around its center), and are convenient for the present discussion. The
polyhedra present in the P and σ phases are the following, variously distorted in slight degree:

Coordination 12 (I, II, III, VIII, XI in P phase; A and D in σ phase; D_{2} in $\alpha-\mathrm{Mn}$): Regular icosahedron, point symmetry I_{h}; twelve fivefold vertices, represented by a single five-coordinated radius (r).

Coordination 14 (IV, VII, IX, XII in P phase; C and E in σ phase): Icositetrahedron with twelve fivefold vertices, represented by one five-coordinated radius (r), and two diametrically opposite sixfold vertices, represented by one six-coordinated radius $\left(r^{*}\right)$; point symmetry $D_{6 d}$.
Coordination 15 (V and X in P phase; B in σ phase): Icosihexahedron with twelve fivefold vertices in two different groups of six, represented by two respective five-coordinated radii (r for the six nearest the trigonal axis, r^{\prime} for the other six), and three sixfold vertices in the equatorial plane, represented by one sixcoordinated radius (r^{*}); point symmetry $D_{3 h}$.

Coordination 16 (VI in P phase; X and A in $\alpha-\mathrm{Mn}$): Icosioctahedron with twelve fivefold vertices, represented by one five-coordinated radius (r), and four

Table 5. Ligating radii in P and σ phase
(All values in Ångström units)

tetrahedrally oriented sixfold vertices, represented by one six-coordinated radius $\left(r^{*}\right)$; point symmetry T_{d}.

A thirteen-coordinated polyhedron of low symmetry found in α-manganese $\left(D_{1}\right)$ but not in the P or σ phases will not be discussed here.

The interesting possibility suggested itself that the atoms in the P phase may have radii which conform closely in magnitude to the ideal symmetries of the corresponding polyhedra. On this assumption, the observed interatomic distances were expressed in observational equations as the sums of appropriate pairs of the characteristic radii mentioned above, and the values of these radii (one-three for each atom; twenty-one for twelve different atoms) were determined by the method of least squares. The values obtained are given in Table 5. It will be observed that corresponding radii for similarly coordinated atoms are in remarkable agreement.

As a test of the basic assumption, 'calculated' interatomic distances were obtained by summing the corresponding pairs of atomic radii. For this purpose averages of corresponding radii over similarly coordinated atoms were used, with a resultant reduction of the number of parameters from twenty-one to eight. The resulting 'calculated' distances are compared with the 'observed' distances in Table 4, where it is seen that agreement is remarkably good. Fifty-eight nonequivalent distances, ranging from $2 \cdot 367 \AA$ to $3 \cdot 151 \AA$ (a spread of $0.784 \AA$) are fitted by means of these eight parameters with a weighted mean deviation of
$0.035 \AA$, the largest deviation being $0.122 \AA$ and the next largest $0.093 \AA$. (The eight parameters could presumably be even reduced to seven, without materially affecting the agreement, by averaging the two kinds of five-coordinated radii on the 15 -coordinated atoms V and X.) A parallel calculation was made for the σ phase, using the distances of Bergman \& Shoemaker (1954), and the nine radii obtained are listed with the P-phase radii in Table 5 . These were reduced to six by averaging over similarly coordinated atoms, and 'calculated' interatomic distances were obtained. Agreement with 'observed' distances was almost but not quite as good as in the P phase, the average deviation between 'observed' and 'calculated' distances being $0.039 \AA$. This is an interesting result, in view of the fact that the P phase appears to be in some respects a 'distortion' of the σ phase.

By way of contrast, these results may be compared with the results of a more crude previous calculation on the P phase in which only one radius value was permitted for each atom. Radii obtained for similarly coordinated atoms were in fairly good agreement, but even when all twelve radii were used in obtaining 'calculated' distances, agreement with 'observed' distances was very unimpressive. The best agreement was for the 12 -coordinated atoms, where a mean deviation of $0.050 \AA$ and a maximum deviation of $0.101 \AA$ were obtained. The other atoms showed average deviations grouped closely around $0.12 \AA$, and maximum deviations as large as $0.395 \AA$. The overall weighted deviation was $0.096 \AA$.

Evidently the choice of parameters (in the calculation first described) is a very significant one, and the results obtained have an important bearing on the fundamental nature of the packing and bonding in these structures. The most salient result is that the ligands in these structures divide quite distinctly into two types, namely those described as five-coordinated and those described as six-coordinated. Since the sixcoordinated ligands are shorter and therefore presumably stronger with respect to bonding, they may have something of the character of localized covalent bonds, while by comparison the bonding in the five-coordinated ligands may be largely delocalized and more typically metallic. Moreover, the fact that the sixcoordinated ligands are found in these structures only in the directionally simple and familiar linear, triangular, and tetrahedral configurations around the central 14-, 15 -, and 16 -coordinated atoms respectively, suggests that these ligands are bonds formed with some of the various well-known appropriate hybrids, individually or in various passible linear combinations. Presumably the hybrids principally involved are those involving strong participation of d orbitals. The five-coordinated radii of the 12 -coordinated atoms may correspond uniformly to some mixture of d, s, and p orbitals in approximately the ratio suggested by Pauling (1947) for transition elements, but in the higher-coordinated atoms the d character
may be largely preempted by the six-coordinated ligands, resulting in larger radius values.

It is interesting to study the frameworks formed in the σ phase and P phase by these six-coordinated ligands, shown in Fig. 5. These consist of infinite in-

Fig. 5. Frameworks of six-coordinated ligands in (a) the σ phase, and (b) the P phase. Tapered double lines indicate inclined ligands interconnecting nets on adjacent main layers, and belonging to infinite vertical zigzag rows. Isolated dots indicate infinite straight vertical rows.
dependent vertical chains of 14 -coordinated atoms, and of horizontal networks consisting of rows of 14 coordinated atoms with branch points at 15 - and 16 coordinated atoms. In the σ phase the horizontal networks (cf. Wells (1956), Fig. 20(c), p. 24) are confined to their respective main layers with no interconnections; in the P phase they are interconnected through atoms of kind \mathbf{X} and VI into two interlocking but mutually non-interconnected infinite three-dimensional latticeworks.

The excellent general agreement between observed and calculated interatomic distances suggests also that bond numbers corresponding to the various radii tend to be uniform. If we require that both halves of a ligand have the same bond number, this tendency would be propagated throughout the structure, so that all five-coordinated ligands would tend to have a common bond number and all six-coordinated ligands would tend to have a common bond number different from the first. It should be noted that if this tendency is at all strict it would require the valences of the higher-coordinated atoms to be larger than that of the 12 -coordinated atoms, since in addition to forming all
of the ligands formed by the 12 -coordinated atoms the higher-coordinated atoms must form two to four sixcoordinated ligands. (The valences calculated from the observed distances by a straightforward application of Pauling's (1947) bond-number equation and singlebond radius values, shown in Table 6, suggest on the

Table 6. Pauling valences

C.N	N. 12			C.N. 15		C.N. 16	
Atom	$\begin{aligned} & \text { Va- } \\ & \text { lence } \end{aligned}$	Atom	Va- lence	Atom	Valence	Atom	$\begin{aligned} & \text { Va- } \\ & \text { lence } \end{aligned}$
I	6.42	IV	$5 \cdot 20$	V	$4 \cdot 71$	VI	$4 \cdot 78$
II	$5 \cdot 48$	VII	$5 \cdot 54$	X	5-24		
III	$5 \cdot 81$	IX	$5 \cdot 45$		$4 \cdot 97$		
VIII	$5 \cdot 20$	XII	$5 \cdot 54$				
XI	$6 \cdot 19$		$\overline{5 \cdot 43}$				
	$5 \cdot 82$						

contrary that the valence decreases with coordination; similar results were obtained with the σ phase.)

Although the scattering parameters are rather rough, the information they provide regarding the distribution of kinds of atoms is in reasonable agreement with indications obtained for the σ phase ($\mathrm{Fe}-\mathrm{Cr}$, Bergman \& Shoemaker, 1954; Ni-V, Fe-V, and Mn-Cr, Kasper \& Waterstrat, 1956). There is no experimental basis for differentiation of nickel and chromium in the P phase, but it is seen that the scattering parameter, and therefore the molybdenum content, increases with the coordination number. The percentage values as given are not normalized (they predict an overall molybdenum content about 5% too high) owing to the choice of limiting values for the scattering parameter. (In the calculation of the Pauling valences given in Table 6 these limiting values were taken somewhat higher (0.80 and 1.37) to obtain approximately normalized molybdenum percentages to be used as weighting factors for single-bond radii.)

It appears plausible on the basis of the present results, and in part by analogy with σ-phase results, that in the P phase the 12 -coordinated atoms are mainly nickel, the 14 -coordinated atoms mainly mixtures of molybdenum and chromium, and the 15- and 16 -coordinated atoms mainly molybdenum.

In the case of the σ phase a strong polyhedron in wave-number space was indicated by the X-ray intensities as corresponding to a Brillouin zone having a capacity of 6.97 electrons per atom with spins paired (Bergman \& Shoemaker, 1954), in rather striking accord with the observation of Bloom \& Grant (1953) that for binary σ phases, at least in the first long period, the compositions are such that the number of electrons beyond the previous rare-gas shell averages close to seven. In the P phase the corresponding polyhedra is more complicated and not as well defined. Its capacity appears to be closer to 6.5 electrons per atom, while the average number calculated from the composition of the alloy is $7 \cdot 6$. No rational interpretation is apparent at present.

We wish to thank Prof. Paul A. Beck of the University of Illinois for his kindness in donating a specimen of the P phase for study, and for much helpful cooperation. Financial support from the Office of Ordnance Research is gratefully acknowledged.

References

Andrews, K. W. (1949). Nature, Lond. 164, 1015.
Arnfelt, H. \& Westgren, A. (1935). Jernkontor. Ann. 119, 185.
Bergman, G. \& Shoemarer, D. P. (1954). Acta Cryst. 7, 857.
Bloom, D. S. \& Grant, N. J. (1953). Trans Amer. Inst. Min. (Metall.) Engrs. 197, 88.
Bradley, A.J. \& Thewlis, J. (1927). Proc. Roy. Soc. A, 115, 456.
Brink, C. \& Shoemaker, D. P. (1955). Acta Cryst. 8, 734.

Booth, A. D. (1946). Proc. Roy. Soc. A, 188, 77.
Das, D. K., Rideout, S. P. \& Beck, P. A. (1952). Trans. Amer. Inst. Min. (Metall.) Engrs. 194, 1071.
Dickins, G. J., Douglas, A. M. B. \& Taylor, W. H. (1951). Nature, Lond. 167, 192.

Ellinger, F. H. (1942). Trans. Amer. Soc. Met. 30, 607.

Greenfield, P. \& Beck, P. A. (1954). Trans. Amer. Inst. Min. (Metall.) Engrs. 200, 253, 758.
Kasper, J. S. (1954). Acta Metallurg. 2, 456.
Kasper, J. S., Decker, B. F. \& Belanger, J. R. (1951). J. Appl. Phys. 22, 361.

Kasper, J. S. \& Waterstrat, R. M. (1956). Acta Cryst. 9, 289.
Pauling, L. (1947). J. Amer. Chem. Soc. 69, 542.
Pauling, L. (1949). Proc. Roy. Soc. A, 196, 343.
Rideout, S., Manly, W. D., Kamen, E. L., Lement, B. S. \& Beck, P. A. (1951). Trans. Amer. Inst. Min. (Metall.) Engrs. 191, 872.
Shoemaker, D. P. \& Bergman, B. G. (1950). J. Amer. Chem. Soc. 72, 5793.
Shoemarer, D. P., Brink, C. \& Fox, A. (1955). Technical Report No. 1, Office of Ordnance Research Project No. 461 ; also Paper No. 16, Summer 1955 Meeting, American Crystallographic Association, Pasadena, California.
Shoemaker, D. P., Donohue, J., Schomaker, V. F. H. \& Corey, R. B. (1950). J. Amer. Chem. Soc. 72, 2328.
Tucker, C. W. (1950). Science, 112, 448.
Tucker, C. W. \& Senio, P. (1953). Acta Cryst. 6, 753.
Wells, A. F. (1956). The Third Dimension in Crystallography. Oxford: Clarendon Press.

Acta Cryst. (1957). 10, 14

The Prediction of Twinning Modes in Metal Crystals

By M. A. Jaswon and D. B. Dove*
Department of Mathematics, Imperial College, London S.W. 7, England

(Received 18 July 1956)
A new crystallographic analysis of deformation twinning in multiple lattices is developed. This enables the operative twinning modes to be predicted for all metal crystals, including α-uranium. Reasons are given for the non-appearance of certain modes expected theoretically.

Introduction

Deformation twinning of a crystal may be examined from two points of view, the macroscopic and the microscopic. On the macroscopic scale, twinning is achieved by a homogeneous shear parallel to the composition or twinning plane K_{1}, along a shear direction η_{1}. The plane perpendicular to K_{1}, passing through η_{1}, is termed the plane of shear. Associated with K_{1}, η_{1} there exists a second undistorted plane K_{2}, cutting K_{1} in a direction perpendicular to η_{1} and cutting the plane of shear in a direction η_{2}. Twinned crystals are of two distinct kinds, referred to as first and second. In the former, K_{1} is rational, and may be regarded as the plane of an imagined mirror which reflects the structure of the twin into that of the matrix. In the latter, K_{1} is irrational, but η_{1} is rational,

[^3]and may be regarded as the direction of an imagined axis about which a rotation of 180° transforms the structure of the twin into that of the matrix. For any given mode
$K_{1}=(h k l), K_{2}=\left(h^{\prime} k^{\prime} l^{\prime}\right), \eta_{1}=[u v w], \eta_{2}=\left[u^{\prime} v^{\prime} w^{\prime}\right]$,
there exists theoretically a conjugate or reciprocal mode
$K_{1}=\left(h^{\prime} k^{\prime} l^{\prime}\right), K_{2}=(h k l), \eta_{1}=\left[u^{\prime} v^{\prime} w^{\prime}\right], \eta_{2}=[u v w]$, involving the same macroscopic shear. From the macroscopic point of view, there should be nothing to choose between a mode and its conjugate, but in certain cases the latter has never been reported operative. The conjugates to the modes (9) and (10), of Table 1, have been reported operative: these are the only established examples in metals of twinning of the second kind.

[^0]: * Sponsored by Office of Ordnance Research.

[^1]: * These figures are based on single-crystal observed structure factors. (Calculated structure factors were used for (002), (004), and (006).) Figures for $l=4,3$ and 5 , and 6 were scaled from figures for corresponding planes with $l=0$, 1 , and 2 respectively. $m=$ multiplicity.
 \dagger These lines are presumably due to an impurity; they correspond in spacing to strong lines of $\mathrm{Cr}_{2} \mathrm{O}_{3}$.
 \ddagger Each of these lines presumably contains an α_{2} contribution from the preceding line, but is here calculated as if α_{2}

[^2]: * For each atom the y parameter lies directly beneath the corresponding x parameter. Δ values are apparent erroris due to non-convergence and peak-overlap effects, as determined by the Booth method.
 \dagger Parenthesized values in the 'Fourier IV' column are assumed limiting values, used instead of the unparenthesized values lying directly above them in the calculation of the penultimate set of structure factors, which were used in the 'calculated Fourier' to obtain the Δ values. Parenthesized values in the 'Final' column are also assumed limiting values (differing from the others in that dispersion corrections are taken into account) used instead of the unparenthesized ones in calculating the final set of structure factors (Table 3) and the \% Mo in the next column.

[^3]: * Now at Atomic Energy Research Establishment, Harwell, England.

